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1
STREAMING LIGHT PROPAGATION

BACKGROUND

Realistic lighting is an important component of high qual-
ity computer rendered graphics. By utilizing a renderer
employing a global illumination model, scenes can be pro-
vided with convincing reflections and shadows, providing the
requisite visual detail demanded by feature length animated
films and other content. Conventionally, a ray tracing ren-
derer may be utilized to provide global illumination in a
simple manner.

SUMMARY

The present disclosure is directed to streaming light propa-
gation, substantially as shown in and/or described in connec-
tion with at least one of the figures, as set forth more com-
pletely in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 presents an exemplary diagram of a system for
providing streaming light propagation;

FIG. 2 presents an exemplary diagram of a data structure
for light propagation data; and

FIG. 3 presents an exemplary flowchart illustrating a
method for providing streaming light propagation.

DETAILED DESCRIPTION

The following description contains specific information
pertaining to implementations in the present disclosure. One
skilled in the art will recognize that the present disclosure
may be implemented in a manner different from that specifi-
cally discussed herein. The drawings in the present applica-
tion and their accompanying detailed description are directed
to merely exemplary implementations. Unless noted other-
wise, like or corresponding elements among the figures may
be indicated by like or corresponding reference numerals.
Moreover, the drawings and illustrations in the present appli-
cation are generally not to scale, and are not intended to
correspond to actual relative dimensions.

With large processing overhead and highly random data
access requirements, ray tracing becomes less suitable for
complex scenes with larger amounts of data, as required by
feature films and other challenging applications. Moreover, to
provide lighting environments that are artistically driven and
visually attractive, artists and directors require interactive
visualization of lighting changes. A conventional ray tracer
requires the entire scene to be re-rendered again to show the
result of any lighting changes, a time consuming and resource
intensive process that may not be reasonably accommodated
within a production budget. While techniques such as ren-
derer state caching and screen-space data structures may
assist in accelerating the re-rendering process, such
approaches are often only limited to specific portions of the
scene and can only provide a lower quality visualization
compared to a final quality rendering.

Accordingly, FIG. 1 presents an exemplary diagram of a
system for providing streaming light propagation. Diagram
100 of FIG. 1 includes workstation 110, display 118, user
130, input device 135, network 140, servers 145a, 1455 and
145¢, and scene data 150. Workstation 110 includes processor
112, memory 114, and graphics processing unit (GPU) 116.
Memory 114 includes rendering application 120, camera rays
122, geometry node 124, output image 128, and light propa-
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gation data 160. Light propagation data 160 includes emis-
sion samples 162, radiance samples 163, and propagation
records 164. Scene data 150 includes object geometry 154,
lighting 155, textures 156, and shaders 157.

Workstation 110 may be any computing device such as a
rackmount server, desktop computer, or mobile computer.
User 130 may utilize input device 135, for example a key-
board and mouse, to direct the operation of rendering appli-
cation 120 executing in memory 114 of processor 112. Ren-
dering application 120 may process scene data 150 received
from network 140 to generate a rendered output image 128 for
output to display 118 through GPU 116. Network 140 may be
a high speed network suitable for high performance comput-
ing (HPC), for example a 10 GigE network or an InfiniBand
network. Once completed, output image 128 may also be
copied to non-volatile storage, not shown in FIG. 1.

For simplicity, it is assumed that output image 128 is only
a single frame and that object geometry 154 already includes
the positioning of all objects within the scene for the associ-
ated frame. However, in alternative implementations, scene
data 150 may further include motion data for object geometry
154, in which case several animation frames may be rendered
by rendering application 120. Moreover, some implementa-
tions may render multiple frames of the same scene concur-
rently, for example to provide alternative camera angles or to
provide stereoscopic rendering. Lighting 155 may include the
properties of all light sources within the scene. Textures 156
may include all textures necessary for object geometry 154.
Shaders 157 may include any shaders necessary to correctly
shade object geometry 154. Other data may also be stored in
scene data 150, for example virtual camera parameters and
camera paths.

As previously discussed, it is desirable to provide realistic
lighting for a computer generated graphics rendering, or out-
put image 128. While rasterizing renderers can provide high
performance, global illumination can only be approximated.
For demanding applications such as feature film rendering,
high quality global illumination is required from rendering
application 120.

Accordingly, rendering application 120 is any type of ren-
derer that can provide high quality global illumination, such
as a ray tracing based renderer. For example, rendering appli-
cation 120 may be a streaming global illumination renderer,
where all the camera rays 122 necessary for rendering output
image 128 are generated and kept within memory 114. Object
geometry 154 is streamed into memory 114 as individual
work units or nodes, with an exemplary geometry node 124 as
shown, processed against camera rays 122 using other ele-
ments of scene data 150 as desired, and freed from memory
114. Since all required processing is completed after freeing
the node from memory, each geometry node 124 of object
geometry 154 needs to be accessed at most once, and may also
be skipped if the geometry node is not visible in the current
scene. The above streaming of object geometry 154 is
repeated for as many global illumination passes as required,
for example 2-4 passes. Since performing only one pass is
equivalent to ray casting, at least two passes are required in
one configuration.

Since each geometry node 124 is an individual work unit
and can be processed without dependencies from other geom-
etry nodes, servers 145a, 1455, and 145¢ may also be utilized
for distributed parallel processing. Servers 145a, 1456, and
145¢ may contain components similar to those of workstation
110. SIMD (single instruction, multiple data) instructions on
processor 112 and shaders on GPU 116 may be utilized to
further enhance parallelism. Hierarchical traversal across
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camerarays 122 and object geometry 154 may also be utilized
to reduce the number of intersection comparisons required.

While high quality global illumination can be provided by
using a ray tracing based renderer for rendering application
120, interactive visualization of lighting changes is still dif-
ficult to provide since scene data 150 must be re-rendered if
lighting 155 is modified. Since the re-rendering process
requires significant time and resources, artists and directors
cannot quickly visualize different lighting configurations for
optimizing artist-directed lighting in a scene. While some
techniques are applicable to accelerate the re-rendering pro-
cess, such techniques often only affect limited portions of the
scene and can only provide a lower quality visualization
compared to a final quality rendering.

Accordingly, the recording of light propagation data 160 is
proposed for rendering application 120. While rendering
application 120 is tracing output image 128 for the first time,
the light propagation records of camera rays 122 are recorded
as propagation records 164 within light propagation data 160.
Additionally, all emission samples and radiance samples are
tracked and stored as emission samples 162 and radiance
samples 163, respectively. While camera rays are utilized in
FIG. 1 for simplicity, alternative embodiments may also use
camera cones or other shapes for cone tracing or other shape
tracing. Intermediate sums for each pass of a multi-bounce
global illumination rendering may also be stored within light
propagation data 160 for filtering between bounces.

When emission samples 162 and therefore lighting 155 is
adjusted, then output image 128 can be reconstructed by
streaming emission samples 162 through propagation records
164, bypassing a re-rendering of scene data 150. Relighting
of scene data 150 can therefore be carried out orders of
magnitude faster than a straightforward re-rendering. Since
the streaming of emission samples 162 through propagation
records 164 is essentially a streaming multiply-and-add
operation amenable to parallel processing rather than a recur-
sive algorithm, rendering application 120 can relight at inter-
active rates by utilizing parallelism available to processor 112
and/or GPU 116, allowing artists and directors to immedi-
ately visualize lighting changes in full final rendering quality.

For example, assuming a target render size of approxi-
mately 2 megapixels for high definition or Full HD (1920 by
1080) video, and assuming a desired sampling of 100 samples
per pixel to provide sufficient data for filtering, approximately
200 million propagation records are required per global illu-
mination bounce pass. Assuming each record occupies 20
bytes and assuming four (4) global illumination bounce
passes, approximately 16 gigabytes of memory is required
from memory 114, an amount easily allocated for a modern
server or even a high-end consumer class desktop computer.
If insufficient memory is available, high speed local storage
such as solid state disks and/or RAID arrays may also be
utilized.

FIG. 2 presents an exemplary diagram of a data structure
for light propagation data. Light propagation data 260 of FIG.
2 includes data 261a, 2615, 261c, and 261d, which include
emission samples 262, radiance samples 263, records 264a,
264b, 264c, and 2644, and pixels 229. With respect to FIG. 2,
light propagation data 260 may correspond to light propaga-
tion data 160 from FIG. 1. Emission samples 262 may corre-
spond to emission samples 162 from FIG. 1. Pixels 229 may
correspond to pixels of output image 128 of FIG. 1. It should
be noted that the depiction of light propagation data 260 in
FIG. 2 is only a schematic simplification as each data set and
record group may potentially contain hundreds of millions of
records.
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Light propagation data 260 shows an exemplary recording
from four (4) global illumination bounce passes. Accord-
ingly, data 261d corresponds to samples from a fourth pass,
data261c¢ corresponds to samples from a third pass, data 2615
corresponds to samples from a second pass, and data 261a
corresponds to samples from a first pass. Data 2614 contains
only emission samples 262 as data 261d corresponds to
samples from a final global illumination bounce pass. More
specifically, since no further bounces are generated on the
final pass, all samples must be emissive by definition since
they do not rely on other samples. Data 261¢, 2615, and 261a
may each include a mix of emission samples 262 and radiance
samples 263, as shown. Finally, pixels 229, which may cor-
respond to pixels of a final output image 128, includes only
radiance samples 263, as the pixels must be derived from the
tracing.

Rendering application 120 can record light propagation
data 160 including emission samples 162 as emission
samples 262 and propagation records 164 as records 264a,
264b, 264c, and 264d. The remaining radiance samples 263
can be derived from this minimal data set. However, to sup-
port filtering between bounces, the intermediate sums from
radiance samples 263 may be optionally recorded as well. To
implement the recording of light propagation data 160 in
rendering application 120, shaders 157 may include a data
recording shader executed for each bounce of camera rays
122 in rendering application 120, thereby recording light
propagation data 160 while generating output image 128.

More specifically, each of emission samples 262 and radi-
ance samples 263 may correspond to a record containing a
color value, such as a red, green, blue (RGB) value. Records
264a-264d may associate source points and destination
points in scene data 150 to emission samples 262 or radiance
samples 263. The records may also be segmented according
to the associated global illumination (GI) bounce pass. For
example, data 2614 and records 264d may be segmented into
a data structure corresponding to GI pass #4, whereas data
261a and records 264a may be segmented into another data
structure corresponding to GI pass #1, as shown. The seg-
mentation may be implemented in the data recording shader,
as discussed above.

To improve data coherency for multiple relighting opera-
tions, data 261a, 2615, 261c¢, and 261d may be sorted, for
example by source point or destination point. Since a large
number of records may need to be sorted, GPU 116 may be
utilized for accelerated sorting. For example, the high perfor-
mance RadixSorting algorithm can sort over 1G keys per
second on a modern CUDA compatible GPU. See, “Radix-
Sorting, High performance GPU radix sorting in CUDA”,
available from http://code.google.com/p/back4Ocomputing/
wiki/RadixSorting.

FIG. 3 presents an exemplary flowchart illustrating a
method for providing streaming light propagation. Flowchart
300 begins when processor 112 of workstation 110 records
propagation records 164 in a scene represented by scene data
150 (block 310). As previously discussed, this may be carried
out by attaching a data recording shader within shaders 157,
causing rendering application 120 to update propagation
records 164 as camera rays 122 are bounced in the scene
rendering. Rendering application 120 may also be directly
modified to record propagation records 164. As previously
discussed, as long as rendering application 120 is based on a
tracing renderer providing high quality global illumination,
any suitable renderer may be utilized, including cone tracers
and others. After the rendering is finished, the recorded
propagation records 164 may appear similar to records 264a-
264d as shown in light propagation data 260 of FIG. 2. As



US 9,053,582 B2

5

previously discussed, the recording of the propagation
records may also be segmented according to GI bounce pass,
and the records may be sorted by source or destination index
for improved data coherency.

Next, processor 112 of workstation 110 determines emis-
sion samples 162 in scene data 150 (block 320). Turning to
FIG. 2, this is equivalent to determining emission samples
262. For example, the data recording shader may be further
configured to also update emission samples 162 if an inter-
section sample requires no further bounces, indicating a light
emission sample. As previously discussed, radiance samples
263 may also be recorded by the data recording shader to
assist in filtering between bounces. Similar to the propagation
records, the data samples may also be segmented according to
GI bounce pass, as shown in FIG. 2.

Next, processor 112 of workstation 110 edits emission
samples 162, corresponding to emission samples 262 in FIG.
2 (block 330). For example, rendering application 120 may
present a graphical user interface on display 118, allowing
user 130 to adjust the lighting via input device 135. Thus, user
130 may modify emission samples 262, for example by
changing light intensity and/or RGB color values. User 130
may even move or add new light sources to emission samples
262, as long as the new or moved light sources do not require
absorbing or scattering that would invalidate the other exist-
ing records 164. To accommodate any newly updated or
added light sources in emission samples 262, light propaga-
tion records 164 may be intersected with emissive geometry
in scene data 150 to determine all responsive record updates
for propagation records 164. Accordingly, user 130 can flex-
ibly adjust the lighting of the scene to produce art driven
lighting effects.

Additionally, user 130 can flexibly generate effects,
mattes, and arbitrary output variables (AOVs) by selecting
specific paths for modification. As non-limiting examples,
paths intersecting with particular objects or geometry, paths
hitting particular light sources, and paths within a specific
global illumination pass may be targeted. Since all possible
paths are recorded in propagation records 164, the selection
of specific paths for mattes and AOVss is greatly facilitated.
Further, user 130 can specify radiance filters applied to
selected paths that may adjust radiance values for specific
regions of scene data 150. For example, a color correction or
color conversion filter may be provided to modify radiance
values for a specific object.

Next, processor 112 of workstation 110 generates output
image 128 containing pixels 229 by propagating the edited
emission samples 162, corresponding to emission samples
262, through propagation records 164, or records 264a-264d
(block 340). Example pseudocode is as follows:

Initialize array D with edited emission samples;
For (I = last GI pass; I-—; I > 0) {
For each record R in segmentation P[I] {
DI[R.destinationIndex][I-1] += D[R.sourcelndex][I]
* R.amount;
I}

Using light propagation data 260 from FIG. 2 as an
example, the above pseudocode would first begin by initial-
izing an array D with emission samples 262, as edited by user
130. This step would already be completed in steps (320) and
(330) above. For simplicity, an array D is assumed that has
sufficient memory allocation for all possible samples in the
scene; however, an actual implementation may use sparse
arrays, linked lists, tree hierarchies, hash tables, and/or other
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6

data structures. The remaining values in array D, which
include values to be populated with radiance samples 263, are
initialized to a default value, such as zero.

The outer loop iterates from the last GI pass to the first GI
pass. Thus, the GI pass index I begins at GI Pass #4 (last GI
pass) and decrements (I-) until GI pass #1 is processed (I>0),
after which the loop finishes. The inner loop iterates through
each record R within the present segmentation P[I]. For
example, since index I begins at GI Pass #4, the inner loop
may first begin by processing each record R in segmentation
P[4], or records 264d in FIG. 2.

The processing for a particular record R proceeds by
retrieving the RGB color value for the source point in R
(D[R.sourcelndex][1]), multiplying it by the percentage indi-
cated by the propagation amount in R (R.amount), and adding
the result to the RGB color value for the destination point in
R (D[R.destinationIndex|[I-1]). As shown in FIG. 2,
D[R.sourcelndex][I] refers to values in data 261d, whereas
D[R.destinationIndex][I-1] refers to values in data 261c.
Note that the use of the += operator preserves any existing
value that may be at the destination, since multiple records
may accumulate to the same destination.

Since there are no data dependencies, and since writes to
the same destination are easily resolved by simple addition,
the streaming multiply-and-add operation of the inner loop in
the above pseudocode algorithm is highly amenable to paral-
lelism available to processor 112, GPU 116, and servers
145a-145¢, allowing for fast calculation of pixels 229 in
interactive time. Thus, user 130 is enabled to adjust, move, or
add to emission samples 162 and quickly observe the result-
ing lighting changes to output image 128, which may be
shown on display 118. Advantageously, the relighting of out-
put image 128 can be provided at full final render quality and
automatically accounts for all possible lighting effects sup-
ported by rendering application 120. Alternatively, to provide
even faster results for real-time or near real-time feedback,
rendering quality may be reduced using approximations or
smaller data sets.

From the above description it is manifest that various tech-
niques can be used for implementing the concepts described
in the present application without departing from the scope of
those concepts. Moreover, while the concepts have been
described with specific reference to certain implementations,
a person of ordinary skill in the art would recognize that
changes can be made in form and detail without departing
from the spirit and the scope of those concepts. As such, the
described implementations are to be considered in all respects
as illustrative and not restrictive. It should also be understood
that the present application is not limited to the particular
implementations described herein, but many rearrangements,
modifications, and substitutions are possible without depart-
ing from the scope of the present disclosure.

What is claimed is:

1. A computing device for providing streaming light propa-
gation, the computing device comprising:

a processor configured to:

record a plurality of light propagation records in the
scene;

determine a plurality of light emission samples in the
scene;

edit the plurality of light emission samples by changing
at least one of light intensity and red, green, blue
(RGB) color values to provide a plurality of edited
light emission samples;

generate an output image by propagating the plurality of
edited light emission Samples through the plurality of
light propagation records, wherein the plurality of
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light propagation records each includes a source point
and a destination point associated with emissive and
radiance samples in the scene.

2. The computing device of claim 1, wherein the editing of
the plurality of light emission samples further intersects the
plurality of light propagation records with emissive geometry
in the scene to determine updates to the plurality of light
propagation records in response to an adding or a moving of
the plurality of light emission samples.

3. The computing device of claim 1, wherein the processor
is further configured to generate a matte or an arbitrary output
variables (AOV) by selecting specific paths in the plurality of
light propagation records.

4. The computing device of claim 1, wherein the processor
is further configured to apply a radiance filter to selected paths
of the plurality of light propagation records.

5. The computing device of claim 1, further comprising a
memory, wherein the processor is configured to record the
plurality of light propagation records in the memory.

6. The computing device of claim 1, wherein the processor
is further configured to show the output image on a display.

7. The computing device of claim 1, wherein the propagat-
ing is by a streaming multiply-and-add operation.

8. A method for providing streaming light propagation for
use by a computing device having a processor, the method
comprising:

recording, by the processor, a plurality of light propagation

records in a scene;

determining, by the processor, a plurality of light emission

samples in the scene;

editing, by the processor, the plurality of light emission

samples by changing at least one of light intensity and
red, green, blue (RGB) color values to provide a plural-
ity of edited light emission samples;

generating, by the processor, an output image by propagat-

ing the plurality of edited light emission samples
through the plurality of light propagation records,
wherein the plurality of light propagation records each
includes a source point and a destination point associ-
ated with emissive and radiance samples in the scene.

9. The method of claim 8, wherein the editing of the plu-
rality of light emission samples further intersects the plurality
of light propagation records with emissive geometry in the
scene to determine updates to the plurality of light propaga-
tion records in response to an adding or a moving of the
plurality of light emission samples.
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10. The method of claim 8, further comprising:

generating a matte or an arbitrary output variables (AOV)

by selecting specific paths in the plurality of light propa-
gation records.

11. The method of claim 8, further comprising:

applying a radiance filter to selected paths of the plurality

of fight propagation records.

12. The method of claim 8, wherein the recording of the
plurality of light propagation records is into a memory.

13. The method of claim 8, further comprising:

showing the output image on a display.

14. The method of claim 8, wherein the propagating is by a
streaming multiply-and-add operation.

15. A system for providing streaming light propagation, the
system comprising:

a display;

a computing device comprising a memory and a processor

configured to:

record, in the memory, a plurality of light propagation
records in a scene;

determine a plurality of light emission samples in the
scene;

edit the plurality of light emission samples by changing
at least one of light intensity and red, green, blue
(RGB) color values to provide a plurality of edited
light emission samples;

generate an output image for showing on the display by
propagating the plurality of edited light emission
samples through the plurality of light propagation
records, wherein the plurality of light propagation
records each includes a source point and a destination
point associated with emissive and radiance samples
in the scene.

16. The system of claim 15, wherein the editing of the
plurality of light emission samples further intersects the
edited plurality of light emission samples with the scene to
update the plurality of light propagation records, enabling an
adding or a moving of the plurality of light emission samples.

17. The system of claim 15, wherein the processor is fur-
ther configured to generate a matte or an arbitrary output
variables (AOV) by tracking specific paths in the plurality of
light propagation records.

18. The system of claim 15, wherein the processor is fur-
ther configured to apply a radiance filter to selected paths of
the plurality of light propagation records.

19. The system of claim 15, wherein the processor is fur-
ther configured to show the output image on the display.

20. The system of claim 15, wherein the propagating is by
a streaming multiply-and-add operation.

#* #* #* #* #*
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